

Your Breath: Your Health[™]

Coronavirus 19

Understanding Breath Aerosol Transmission Risk

Dr Sterghios A. Moschos FRSC FIBMS FHEA MRSB Chief Scientific Officer, PulmoBiomed Ltd. Associate Professor, Cellular and Molecular Sciences @docmoschos

Overview

- Breath for Coronavirus screening.
 - Scientific evidence.
 - Key unknowns.

Exhaled Breath Diagnostics.

- Opportunities.
- Challenge.
- Competition.

■ The PBM-HALETM approach.

- Platform IP.
- Supporting key data.
- The proposition.

PBM-HALE[™]

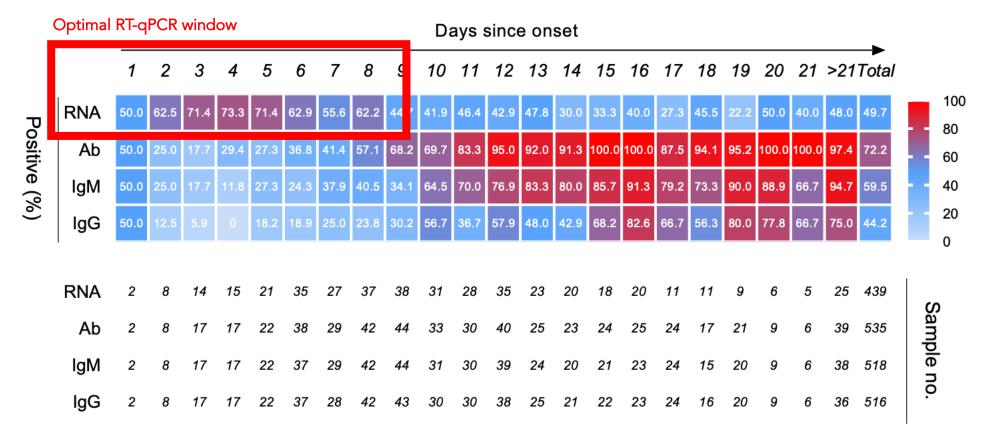
Biology

- SARS-CoV-2 binds ACE2 receptor.¹
- ACE2 protein levels highest in lower lung.²
- Aerosols (<5 μ m) best to reach lower lung (drug delivery science).³

Pathology

- Disease of the lower lung: respirator need.
- Proposed transmission routes: fomites, droplets (cough, >5 μ m), but:
 - Models & data⁴ show transmission without symptoms (no cough!).
 - Aerosol science used in epidemiology out of date.⁵

Clinical evidence


- Transmission occurs up to 1 week before symptoms (peak @ -2.9 days).¹
- Virus genome levels max in lower lung samples > nose > throat.²⁻⁵
 - <42% false negative oral swabs.
 - 10-25% false negative nasal swabs.
 - Viable virus levels low in nasal swabs.
 - Nasal detection ~70% days 0-5 from symptoms⁶

Experimental evidence:

- COVID-19 ward aerosol gel traps –ve, but ceiling air vents +ve:⁷ Droplets pulled by gravity, aerosols pulled by air flow.⁸
- Aerosolised virus infectious for 16hrs after mechanical generation.^{9, 10}
- Other coronaviruses can naturally aerosolize (n=3000).¹¹

1. Tindale LC et al. MedRxiv 2020; 2: Winnichakoon P. JClinMicro 2020; 3: Wu et al Clin Inf Dis 2020; 4: Yang Y. et al. MedRxiv 2020; 5: Ai T. et al. Radiology 2020; 6: Zhao J. et al. Lancet 2020; 7: Ong SWX et al. 2020; 8: Bourouiba L. JAMA 2020. 9: Holbrook MG et al. NEJM 2020; 10. Fears AC et al. MedRxiv 2020; 11. Leung N.H. Nature Med. 2020.

Detection of SARS-CoV-2 in nasal swabs (RNA) or blood (IgX) from symptom onset

Our hypothesis

- Disease is a function of amount of virus reaching the lower lung.
- Achieved mainly by breath aerosols (or poor immune system).
- Explains close contact transmission chains.

We need to test breath aerosols for:

- The amount of virus present (genomes).

- Infectivity (viruses).

Diagnosing from Exhaled Breath Condensates (EBC)

Breath is 95% hydrated:

- Volatile compounds (smells, eg garlic, alcohol).
- Vapour & aerosols.
- Biological molecules.

Health and Disease indicators:

- Lung infections.
- Liver diseases.
- Multiple cancers:
 - Blood.
 - Breast.
 - Brain.

Challenges to clinical use

Poor process control

- Reproducibility.
- Contamination:
 - Saliva.
 - Ambient.
- Sample loss.
- Safety.
- Upper vs deep lung separation.

EcoScreen[™]

Sample lost in black tube 17Kg + weight

RTube™

PBM-HALETM: the platform

EBC collector:

- Volatiles and
- Proteins.
- DNA.
- RNA.
- Lipids.
- Medications

Solves key problems:

- Reproducibility.
- Contamination.
- Sample loss.
- Safety.

Cold Chain Dependent:

- Uses dry ice powder (CO₂) to collect sample reliably.
- Dry ice replenished every 1 hr from compressed gas cylinder.
 - Sample needs on the spot test or frozen transfer to lab.

WO2017153755A1: exhaled breath collector – granted; WO2019053423A1: cascade impactor array – granted

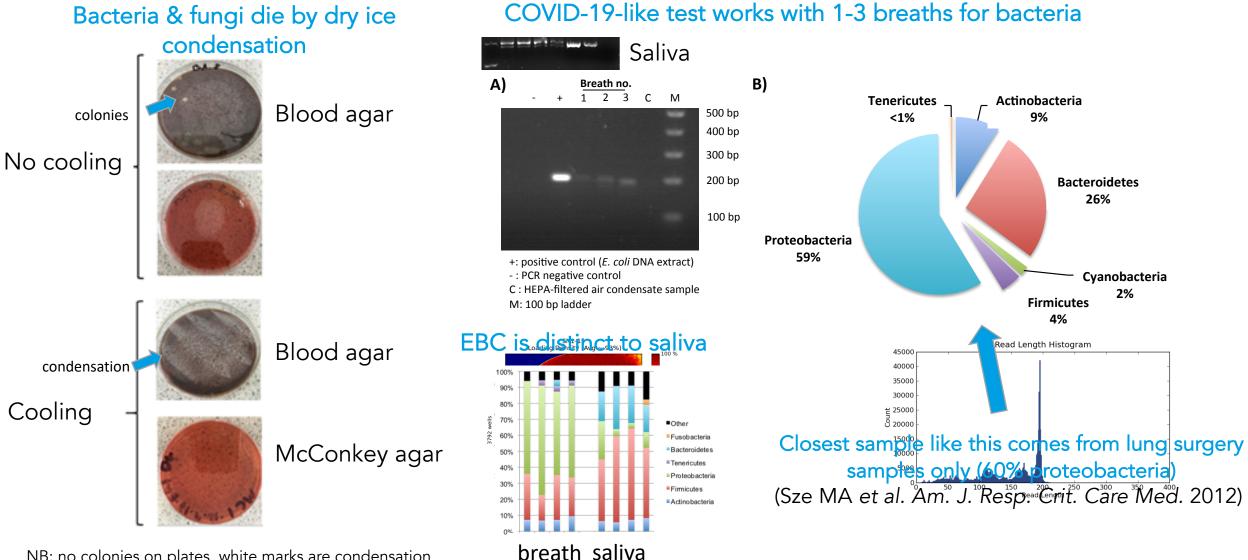
PBM-HALETM: the platform

EBC collector:

- Volatiles and
- Proteins.
- DNA.
- RNA.
- Lipids.
- Medications.

Solves key problems:

- Reproducibility.
- Contamination.
- Sample loss.
- Safety.


- Path to removing the cold chain:
- Proprietary coating to remove need for dry ice.
- Stabilisation material to remove freezer storage.

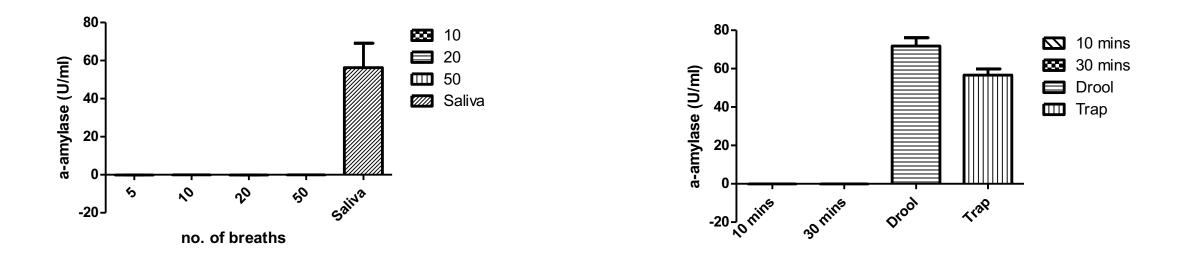
Experiments under way

WO2017153755A1: exhaled breath collector – granted; WO2019053423A1: cascade impactor array – granted

Preliminary data: pathogen DNA

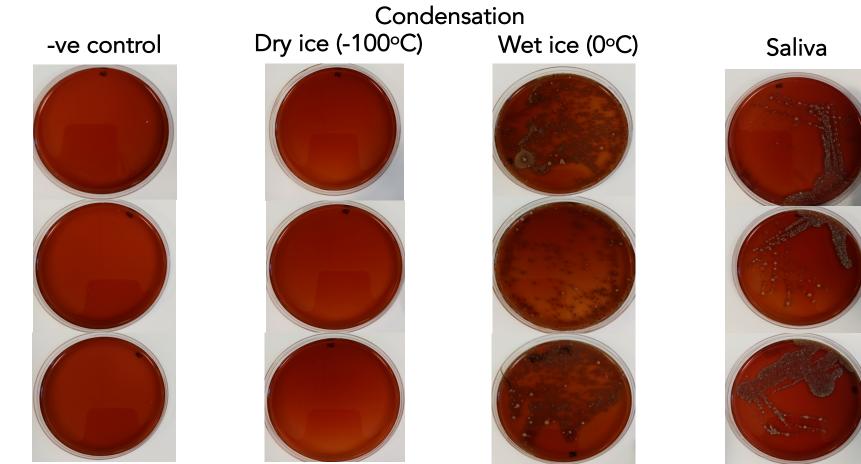
NB: no colonies on plates, white marks are condensation

Prototype: highly consistent sampling



Whether 5 breaths (25 sec; e.g. screening) or 30 min of sampling (e.g. discovery) R^2 range: 0.88 to 0.95, n = 5.

Prototype: no salivary contamination



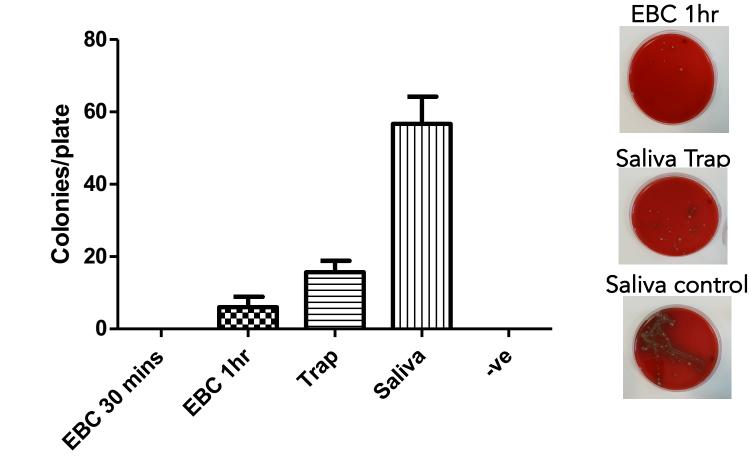
Saliva enzyme levels below limit of detection in EBC:

At least 5000x less in EBC than in saliva (drool)) or device saliva trap levels even after 30 min sampling.

n = 5.

Prototype: No microbial growth due to dry ice condensation (blood agar).

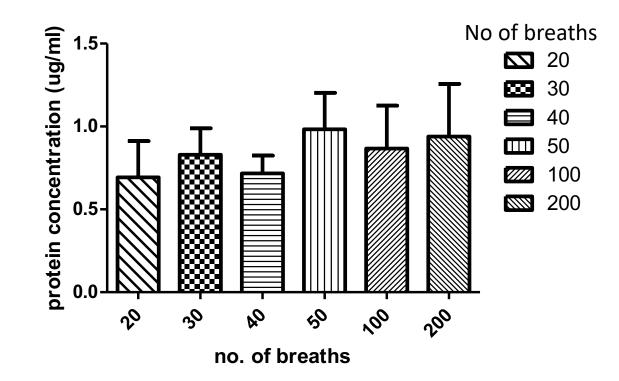
Pulmo


BioMed

2 min sampling period (2x target sampling period for COVID-19 screening use).

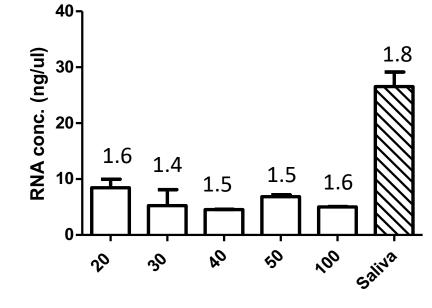
n = 5

Prototype: microbial growth only after loss of dry ice cooling efficacy



Colonies from dry ice-captured EBC cultured on blood agar. Lateral contact of sampling tube to dry ice lost ~40 min after continuous sampling. n = 3.

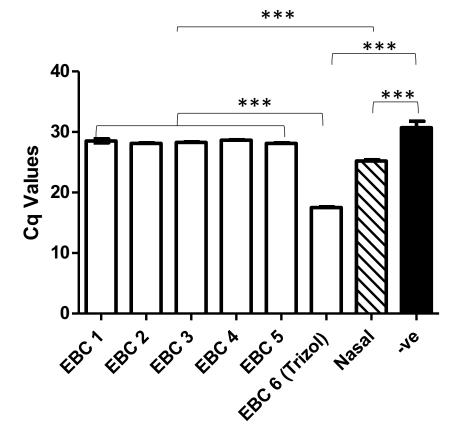
Prototype: consistent [protein] in EBC



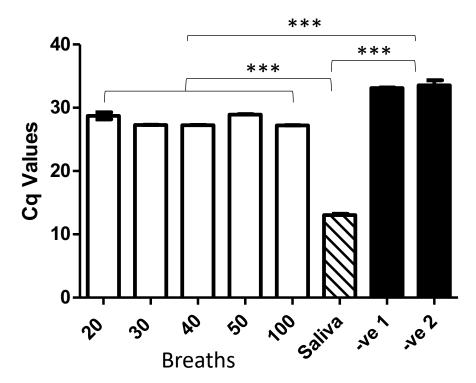
Samples lyophilized and re-constituted in 1/5th of original volume: No statistically significant difference in concentration over time by micro BCA (data close to LLOD). No concentration increase anticipated.

n=5

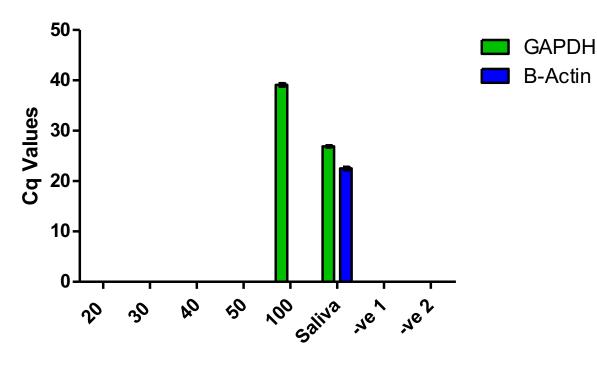
Prototype: consistent [RNA] in EBC


EBC breaths, n=6

EBC 30-100 normalized to 20 breath sample volume, Trizol extraction

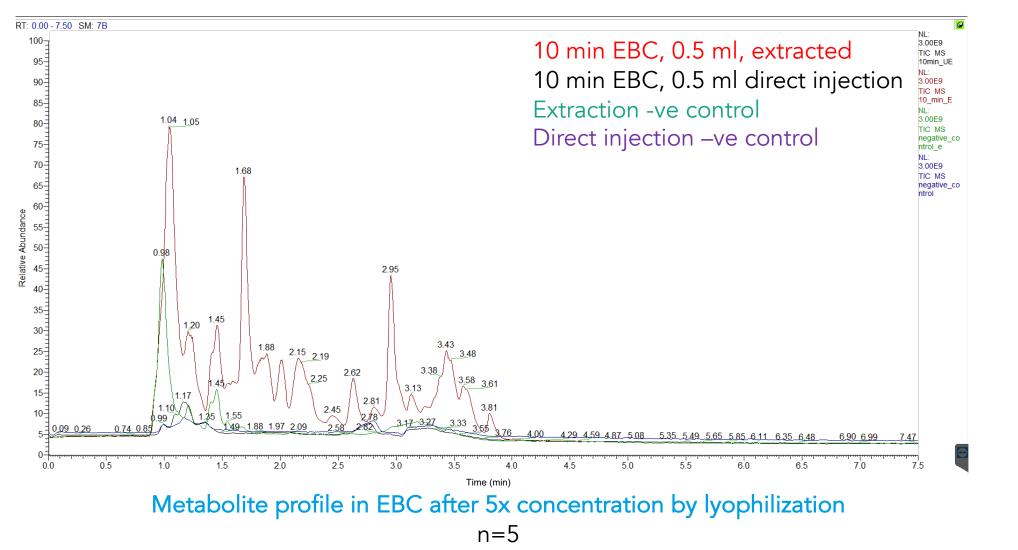

No statistically significant difference in concentration. 260/280 ratios reported per column

Prototype: 18S by PCR in EBC RNA



2 step SYBR Gold RT-qPCR (triplicate) EBC1-5: RNeasy kit 20 breaths EBC6: Trizol 30 min sample Nasal swab.

2 step SYBR Gold RT-qPCR (triplicate) -ve 1: No RT control -ve 2: no cDNA EBC 30-100 normalized to 20 breath sample volume P<0.01 Saliva vs EBC, EBC vs –ve, Saliva vs –ve.


Prototype: GAPDH & β-actin in EBC RNA

2 step SYBR Gold RT-qPCR (triplicate) -ve 1: No RT control -ve 2: no cDNA EBC 30-100 normalized for EBC 20 sample volume

- EBC not classified as human tissue.
 - Human Tissue Act 2004.
 - Cells, DNA, or RNA.
 - EBC explicitly excluded.
- Early data: EBC is 18S+
 - Validation round under way with Taqman® assay.
 - ITS SEQ run planned (human vs fungal).

Prototype: Metabolomics in EBC

Pulmo

BioMed

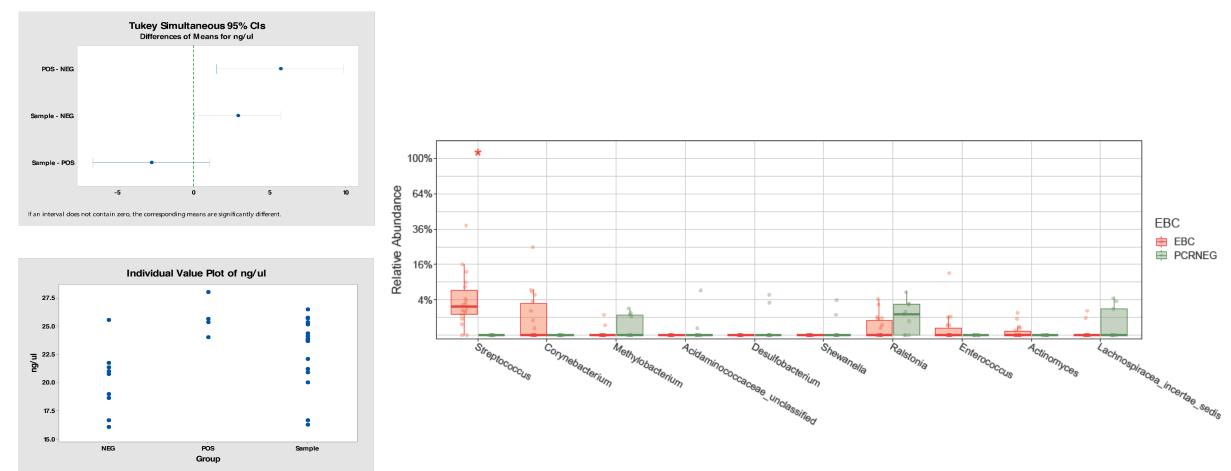
Data generated at the Northumbria University Metabolomics Core Service

Prototype: Metabolomics in EBC

Compound	RMM (g/mol)	RT [min]	Relative ion abundance
1-hexadecyl-glycero-3-phosphate	396.3	1.002	810,094
monoacylglyceride	352.3	1.02	281,866
LysoPA	410.2	1.032	968,316
Palmitoleoylethanolamde	297.3	1.047	187,282
eicosatetraenoate	335.2	1.054	348,544
Linoleamide	279.3	1.061	216,809
Cuscohygrine	224.2	1.067	723,759
N-Decanoylglycine	229.2	1.156	2,612,124
N-Nonanoylglycine	215.2	1.198	1,942,872
cis-3-Hexenyl b-primeveroside	394.2	1.221	160,089
N-Lauroylglycine	257.2	1.923	286,977
N-Undecanoylglycine	243.2	2.072	227,826
phosphatidylethanolamine	837.5	2.388	381,518
Gambogic acid	628.3	2.536	416,778
2-Hexenoylcarnitine	257.2	3.062	994,821
L-argininium	175.1	3.367	502,141
N-Acetylputrescine	130.1	3.519	192,382

Compounds detected by MS1:

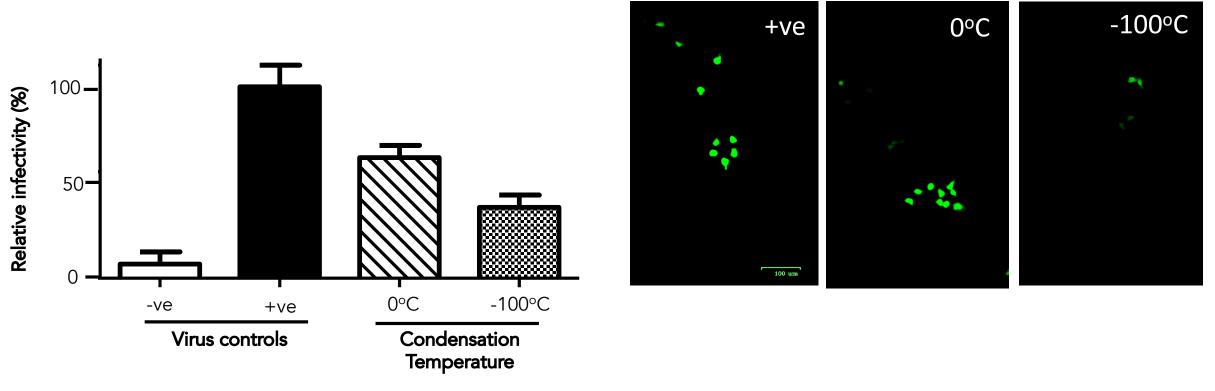
- C6-C24 fatty acids.
- Phospholipids & precursors.
- Glycans.
- Medications.
- Drugs of abuse.
- Dietary compounds.


Additionally:

- 20 multiple HDBM hits.
- 104 novel compounds.

Data generated at the Northumbria University Metabolomics Core Service

Prototype: 16S Microbiomics


Higher DNA content vs background controls.

Detection of Streptococcus (BI FDR q = 0.019); amplicon generation w/out extraction. Detailed work under way to optimize processes, polymerases, pipelines.

Prototype: Detection of aerosolized virus

Efficient capture of aerosolized virus, halves infection risk.

GFP-expressing VSV-pseudotyped lentivirus nebulized using PARI TurboBoy SX and captured using PBM-HALE[™] (15 min). Condensates seeded on 10,000 HEK-293T's and GFP expression measured at 72hrs by FACS, visualized by fluorescent microscopy. Bar = 100 um

Prototype: Clinical Pilot Update.

NO FALSE POSITIVES:

- COVID19 patients (n=12).
 - Nasal swab negative.
 - Week 2-3 of symptoms, known nasal –ve period.
 - Antivirals / hydroxychloroquine.
 - (dyspnoea) 25-30 breaths/min.
- 5-20 min sampling.
- In COVID19 wards.
- Blinded analysis.

- N=60 study actively recruiting.
 - Must be in symptoms week 1.
 - Must be nasal positive.
 - Interim data release: n=30.

We believe we can detect COVID-19 possibly with a 1 min sample

- Safely: Kill the virus.
- More reliably: Larger sample than nasal swabs.
- Simply: With no skills needed: just breathe out.
- Using mass screening: by mass production of plastic.
- Where patients are: using any point of need testing system.
- With current gold standard tests:
 - e.g. Abbott ID NOW[®]: 5 min test.
 - e.g. DeepVerge MicroTox BT: 4 sec test.

We believe we can detect COVID-19 possibly with a 1 min sample

- Confirm infectious virus load
 - By source of virus (oral, lung, nose)
 - By particle size (droplet, aerosol)
 - Optimise sampling maneuver.
- Determine the smallest sample amount needed for RT-PCR detection.

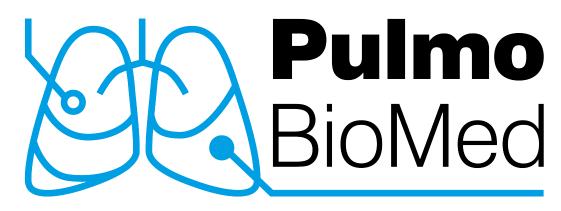
- Expand to pre/asymptomatic contacts / time course
- Deliver Emergency Use Authorisation (USA, UK).
- Produce >50,000 units.
- Supply at no profit basis under development funding.

How do I use the device?

1. Device use SOP: <u>https://youtu.be/h6tLt9u-rWU</u>

2. Lay explanation of use: <u>https://youtu.be/TkQEj-KN_os</u>

Dr. Pete Hotten Chief Executive Officer p.hotten@pulmobiomed.com



Scientific and Technical Team

Saqib Ali (Lead Design Engineer): Design, modification, assembly, production oversight.
Dr Theodora Mantso (Biologist): Device testing and wet biology, microbiology.
Dr Andrew Nelson (Senior Biologist): Next Generation Sequencing.
Dr William Cheung (Senior Biologist): Proteomics & Metabolomics.
Adam Cosheril (Fabrication Lead): In-house 3D Printing
Paul Broom(Health & Safety Lead, technical lead).

Dr. Sterghios A. Moschos FRSC FIBMS Chief Scientific Officer s.a.moschos@pulmobiomed.com

PulmoBioMedTM Ltd. is a technology spin-out of Northumbria UniversityCompany no. 12552857Company no. 12552857

Your Breath: Your Health[™]